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Structure and correlations in two-dimensional classical artificial atoms confined
by a Coulomb potential
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The ordering ofN equally charged particles (2e) moving in two dimensions and confined by a Coulomb
potential, resulting from a displaced positive chargeZe is discussed. This is a classical model system for
atoms. We obtain the configurations of charged particles which, depending on the value ofN andZ, may result
in ring structures, hexagonal-type configurations, and forN/Z'1 in an inner structure of particles which is
separated by an outer ring of particles. ForN/Z!1, the Hamiltonian of the parabolic confinement case is
recovered. ForN/Z'1, the configurations are very different from those found in the case of a parabolic
confinement potential. A hydrodynamic analysis is presented in order to highlight the correlations effects.
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I. INTRODUCTION

Quantum dots, orartificial atoms, have been a subject o
intense theoretical and experimental studies in recent y
@1# due to the occurrence of numerous interesting effe
caused by electron correlation, e.g., Wigner crystallizati
overcharging, and nontrivial behavior in a magnetic fie
These electron correlations appear most clearly when
electron interaction and the confinement potential domina
over the kinetic energy of the system. This can be realiz
e.g., in, quantum dots which have much smaller elect
density as compared to real atoms.

Correlation effects show up in an even more pronoun
way in classical systems where the kinetic energy is zer
the absence of thermal fluctuations. Two-dimensional~2D!
classical dots confined by a parabolic potential were stud
earlier and a table of Mendeleyev for such artificial ato
was constructed@2#. The classical system that is more close
related to real atoms was studied in Ref.@3#, where as a
function of the strength of the confinement potential, surp
ing rich physics were observed such as structural transiti
spontaneous symmetry breaking, and unbinding of partic
which is absent in parabolic confined dots. The confinem
potential was of the Coulomb type, but in order to preve
the collapse of all electrons onto the nucleus~which we call
‘‘impurity’’ in this case!, the positive chargeZe was dis-
placed by a certain distance from the 2D plane where
electrons were moving in~see Fig. 1!. Note that our system
is related to the ‘‘superatom’’ system introduced
Watanabe and Inoshita@4#. The superatom is a spheric
modulation-doped heterojunction. In particular, it is a qua
atomic system that consists of a spherical donor-doped
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and a surrounding impurity-free matrix with a larger electr
affinity. The quantum mechanical electron structure of t
system was studied in Ref.@5# and it was found that due to
the absence of the 1/r singularity in the potential, the order
ing of the energy levels is dominated by the no-radial-no
states, in contrast to real atoms, wheres and p states are
dominant.

In the present paper, we present a systematic study o
system of Ref.@3# as a function of the number of particle
(N). In contrast to Ref.@3#, we will not vary the strength of
the confinement potential, as this was already presente
our earlier work@3#, where we limited the numerical result
to the caseZ5N54, but we will varyZ andN. Furthermore,
we will compare our numerical results with the results o
hydrodynamic, i.e., continuum approach. In the latter ca
the electron density is taken as a fluid, i.e., there are
charge quanta. This is in contrast to our numerical simulat
where the electrons are point particles with a fixed quanti
charge value. The fact that charge is now distributed in pa
ages ofq52e will introduce important correlation effects
which is the central theme of the present work.

Note also that the present classical study can serve
zeroth-order approach for more demanding quantum
chanical calculations. Recently, such classical calculati
were used@6# as a starting point in order to construct bett
quantum wave functions, at least in the strong magnetic fi
limit.

Besides the above mentioned analogy with real and a
ficial atoms, which are inherently quantum mechanical, th
exist other experimental realized systems that behave pu
classically and for which our study is relevant. Examples
charged colloidal suspensions where it was found rece

sti-
-

FIG. 1. Schematic view of the system.
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that correlation effects between the counterions can re
into an overscreening and attraction between like char
colloids @7#. Our system is a simplified 2D model for thos
colloidal systems.

The system under study can be realized experimentall
the system of electrons above liquid helium@8# by putting a
positive localized charge in the substrate that supports
liquid helium. The equivalent quantum mechanical syst
can be realized using low-dimensional semiconductor st
tures with impurities, also called remote impurities, whi
are displaced by a distance from a quantum well@9#. In both
cases, it will be rather difficult to increase the number
positive chargeZ beyond a few units.

Another possible realization of our system is by bringi
an atomic force microscope tip close to a 2D electron g
When this tip is charged positively, it will induce a confin
ment potential very similar to the one studied in the pres
paper. The advantage of this approach is that the chargeZe
on the tip can be varied continuously by increasing the v
age on the tip.

This paper is organized as follows. In Sec. II, we descr
the mathematical model and our numerical approach to
tain the configurations. The results of our numerical simu
tions are given in Sec. III. A hydrodynamic approach th
neglects the correlation effects is presented in Sec. IV.
numerical simulation results are compared with the result
the hydrodynamic approximation in Sec. V, which clea
brings about the importance of the charge correlation. O
conclusions are presented in Sec. VI.

II. THE MODEL

We study a system withN negatively charged particle
2e, which we call here and further as electrons, interact
through a repulsive Coulomb potential and moving in t
x-y-plane. The particles are kept together through a fix
positive chargeZe located at a distancea from the plane the
particles are moving in~see Fig. 1!. The total energy of this
system is given by the Hamiltonian

H52
Ze2

e (
i 51

N
1

Ar i
21a2

1
e2

e (
i . j 51

N
1

ur i2r j u
. ~1!

Here, the symbole stands for the dielectric constant andr
5$x,y% is the two-component position vector of the 2D ele
tron. For convenience, we express the electron energ
units of E05e2/ea and all the distances in units ofa. This
allows us to rewrite Eq.~1! in the following dimensionless
form:

H52(
i 51

N
Z

Ar i
211

1 (
i . j 51

N
1

ur i2r j u
. ~2!

The ground state configurations of the two-dimensio
system were obtained using the standard Metropolis a
rithm @10#. The electrons are initially put in random position
within some circle and allowed to reach a steady state c
figuration after a number of simulation steps in the order
105. To check if the obtained configuration is stable, w
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calculated the frequencies of the normal modes of the sys
using the Householder diagonalization technique@12#. The
configuration was taken as final when all frequencies of
normal modes were positive and the energy did not decre
further. The metastable states were avoided introducin
small temperatureT51024, which was negligible and did
not influence the accuracy of the simulation.

III. STABLE CONFIGURATIONS

As an example of our results we present in Fig. 2 t
radial distribution of the electrons for a fixed positive char
Z550 for the impurity as a function of the numbers of ele
trons,N, in the dot. Clearly, two different electron distribu
tion types can be distinguished. Namely, for small numbe
electrons,N,s a ring structure arrangement for the electro
is observed which is similar to the one for a parabolic d
~compare with the configurations given in Ref.@2#!; for large
N, the outer electrons can form a ring that is clearly separa
from the other electrons in the dot. This is more clearly se
in Fig. 3 where examples of two different configurations~for
small and largeN) are presented. Note that in the case
largeN, the core electrons are arranged in nearly a triangu
lattice, which is a characteristic for an infinite electron sy
tem.

The very different type of configurations for smallN and
largeN is a consequence of the fact that the screening of
Coulomb center is a much more complicated problem
compared to the parabolic-dot case. Now its behavior is c

FIG. 2. The radial position of the particles,r i , as a function of
the number of electrons in the dot,N, for a system with confinemen
positive chargeZ550. The number of electrons is varied fromN
52 up toN550.
1-2
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trolled by two parameters, namely, the number of electro
N, which characterizes the discreteness of the charges ta
participation in the screening, and the positive chargeZ,
which represents the strength of the confinement Coulo
potential.

In the case of a relatively small number of electronsn
5N/Z!1), the confinement potential is strong, and the el
trons are located close to the origin where the confinem
potential can be replaced by the following approximate o

2
Z

Ar 211
'Vappr~r !52Z1

Z

2
r 2. ~3!

Now substituting it into Hamiltonian~2! and scaling the vari-
ables

H→~Z/2!1/3H, r→~2/Z!1/3r , ~4!

one obtains the Hamiltonian

Happr52~2Z2!1/3N1(
i 51

N

r i
21 (

i . j 51

N
1

ur i2r j u
, ~5!

which, up to a nonessential energy shift, coincides with
Hamiltonian of a parabolic dot as considered in Ref.@2#. In
the aboveZ550 case we have the same parabolic-dot-l
configurations up toN59, while for N>10, new configura-
tions as~3,7!, ~4,7!, and so on appear. For largerZ, the simi-
larity between parabolic dot and Coulomb center screen
persists up to largerN values.

The equivalence of Coulomb screening and the results
a parabolic dot at smallN values is confirmed in Fig. 4
where the energy per particle and the maximum radius
Coulomb dot confined by a positive impurity chargeZ
5200 are shown as a function ofN and compared with the
results obtained for the parabolic dot@2,14#. Moreover, if one
plots the differences of energy per particle~scaled byZ) as a
function of the number of particlesN, as is shown in Fig. 5,
we can see small cusps related to the so called ‘‘magic n
bers,’’ which are known to be an important feature of t
configurations of the parabolic dots@12#.

In the opposite case of large electron numbers (n&1),
where the system is nearly neutral, one can expect to
features that are specific for our Coulomb screening case
which are not found with a parabolic dot. In this asympto
case, the Coulomb dot presents a low density system@7# that

FIG. 3. Configurations for two values of the number of partic
N for a fixed Coulomb center withZ550.
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is under the influence of a nonhomogeneous electric fi
We already know that correlation effects in such a system
of most importance. That is why it is worth to take as
reference the hydrodynamic approach, which is some m
field theory where no correlation effects are included.

IV. HYDRODYNAMIC APPROACH

In the hydrodynamic approach, the electrons are descr
by the 2D densityr(r ). They create a potentialf(r ,z) that
obeys the Poisson equation

¹2f~r ,z!54pr~r !d~z!, ~6!

FIG. 4. The energy per particle~a! and the maximum radius~b!
of the Coulomb dot~solid circles! and the parabolic dot~open tri-
angles! as a function ofN. The confinement charge of the Coulom
dot is Z5200.

FIG. 5. Difference in the energy per particle perZ as a function
of N for a Coulomb dot withZ5100. Examples of configuration
where kinks are found in the energy curve are shown in the ins
1-3
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in the whole 3D space. Using the dimensionless variab
introduced in Sec. II, the electron density is measured ina22

units and the potential ine/ea units. Note we took into ac-
count the cylindrical symmetry of the problem caused by
confining potentialV(r )52Z/Ar 211 @see Eq.~2!#. The
Poisson equation can be replaced by the Laplace equati

¹2f~r ,z!50 ~7!

everywhere outside thex-y plane, together with the bound
ary condition

]f~r ,z!

]z U
z50

52pr~r ! ~8!

on this plane.
The mathematical model is based on the statement

the electrons~located in the circular disk of radiusR) have
the same energy at every point of the dot, namely,

$V~r !2f~r !%ur ,R5m5const. ~9!

Here, the symbolf(r )5f(r ,0) stands for the potential cre
ated by the 2D electrons in the disk, and the symbolm is the
chemical potential of this electron system.

The above equations have to be supplemented with
more expression, namely, the conservation of the total n
ber of electrons

N52pE
0

R

rdrr~r !. ~10!

The hydrodynamic approach is a kind of mean fie
theory where no correlation effects are included. For
stance, the phenomena of overcharging@7# cannot take place
and the conditionn5N/Z<1 is always satisfied, namely, th
number of electronsN attracted by the Coulomb center nev
exceeds its charge numberZ. The specific casen51 is re-
ferred to ascomplete screening. In this case, the analytica
solution of the above equations can be obtained using
mirror charge technique, and it leads to the following res

rcs~r !5
1

2p~r 211!3/2
, ~11!

with ncs51 andmcs50. This simple limiting case result i
useful as a reference.

In the generalN,Z case, we solved the hydrodynam
equations using the oblate spherical coordinates (0,t,1,
0,s,`) which are defined by

x5RA~s211!~12t2!cosu, ~12a!

y5RA~s211!~12t2!sinu, ~12b!

z5Rst ~12c!

as it was done in Refs.@11,13# for the case of a parabolic do
with radiusR. The solution of the Laplace equation~7! can
be presented as an expansion,
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f~r ,z!5F~t,s!5 (
n50

`

CnP2n~t!
Q2n~ is!

Q2n~0!
~13!

in terms of the firstP2n and secondQ2n kind Legendre poly-
nomials. Thus, the potential created by the electrons on
disk (s50, t,1) can be presented as

f~r !5F~t!5 (
n50

`

CnP2n~t!. ~14!

Now taking into account that on the disk, we have accord
to Eq. ~12c!,

]

]zUz505
1

Rt

]

]sU
s50

, ~15!

and satisfying the boundary condition~8!, one gets the analo
gous expansion for the electron density

r~r !5x~t!52
1

2pRt (
n50

`

CnLnP2n~t!, ~16!

where

Ln52H d

ds
ln Q2n~ is!J U

s50

52H G~n11!

G~n11/2!J 2

, ~17!

andG(x) is the Gamma function.
Next, we expand the Coulomb center potential on the d

into a series of Legendre polynomials as well,

V~r !52
Z

RA111/R22t2
52

Z

R (
n50

`

AnP2n~t!, ~18!

and inserting it together with Eq.~14! into Eq.~9!, we obtain
the final expression

Cn52mdn,02
Z

R
An ~19!

for the electron density expansion coefficientsCn .
In order to define the chemical potentialm we have to

remember that the electron density has to be equal to ze
the free-electron system boundaryr 5R. Thus, the electron
density should satisfy the following condition:

2pRlim
t→0

tx~t!52 (
n50

`

CnLnP2n~0!

52mL02
Z

R (
n50

`

AnLnP2n~0!

50, ~20!

which finally enables us to define the chemical potential
1-4
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m52
Z

RL0
(
n50

`

AnLnP2n~0!

52
ZAp

R (
n50

`

~21!nAn

G~n11!

G~n11/2!
, ~21!

and write down the following electron density expression

x~t!5
Z

2pR2t
(
n51

`

AnLn$P2n~t!2P2n~0!%. ~22!

Inserting the density expression~16! into Eq. ~10!, one ob-
tains the number of electrons,

n5
N

Z
5

2

p S A01
R

Z
m D ~23!

taking part in the screening of the Coulomb center.
Equations~18! and~21!–~23! actually are the solutions o

the problem if the coefficientsAn are known. These coeffi
cients are calculated in the Appendix.

The density~22! enables us to calculate all properties
the electron system. For instance, the mean squared ele
radius can be estimated as

^r 2&5
1

NE0

R

dr r 3r~t!5R2S 2

3
2

16A1

15pnD . ~24!

Due to the linear dependence of the confinement poten
~18!, the chemical potential~21!, and the density~22! on the
charge numberZ, it can be removed by a scaling, and t
hydrodynamic problem is actually controlled by a single p
rameter~say n or R) in contrast to the system of discre
electrons, for which the two parameters (Z and N) were
essential. Thus, the general solution can be presented by
chemical potential and density curves as is shown in Fig
by solid curves. The corresponding dashed curves indi
the asymptote of the above quantities

mas52
Z

R2
, ~25a!

FIG. 6. Hydrodynamic solution~solid curves! and its asymptote
~dashed curves! for large R: Curve 1—number of particles@Eq.
~23!#, curve 2—chemical potential@Eq. ~21!#.
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pR
, ~25b!

which holds for a nearly neutral (n→1) electron system. In
Fig. 7, the electron density for various dot radii is shown. W
see that in the case of small radius~or equivalently largeZ,
i.e., n!1), the electron density becomes similar to the de
sity in a parabolic dot (r;A12r 2/R2), while in the oppo-
site large radius case, it tends to the limiting density~11! for
the completely screened case.

V. CORRELATION EFFECTS

In order to compare the numerical simulation results w
the hydrodynamic approach, we scaled them by the cha
numberZ. In Fig. 8~a!, the energy per particle scaled byZ is
shown as a function of the relative number of electronsn
5N/Z.

The hydrodynamic result~solid curve! was obtained by
numerically integrating the scaled chemical potential~21!
over the number of electronsn, namely,

E~n!

ZN
5

1

ZNE0

n

m dn. ~26!

In Fig. 8~b!, the same comparison is shown for the sca
chemical potential. The numerical simulation results we
calculated as the difference of the total energies for adjac
configurations, namely,mN5EN112EN . We see that when
the charge numberZ increases, the curves tend towards t
hydrodynamic result. This is more clearly seen for t
chemical potential@Fig. 8~b!# than for the total energy curve
@Fig. 8~a!#.

The deviation of the energy and the chemical potentia
the exact numerical simulation results from their hydrod
namic counterparts and has to be interpreted as acorrelation
energybecause such correlations are not included in the
drodynamic approach. As an example, we show in Fig. 9,
Z5100, this difference in energy per particle and simi
results for the chemical potential. The curves for other val
of the confinement charge demonstrate a similar behav
The most remarkable feature of these curves is the lin

FIG. 7. Hydrodynamic solution for the electron density for va
ous dot radii.
1-5
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FIG. 8. The scaled energy per particle~a! and chemical potentia
~b! obtained from our numerical simulations for different values
the confinement chargeZ are compared with the hydrodynamic r
sult.

FIG. 9. The difference in energy~a! and chemical potential~b!
between the hydrodynamic result and the simulation result foZ
5100.
04660
behavior in the nearly full screening region (n→1). The
curves in the above region can be fitted by the rather sim
analytical expressions

DE/NZ5AE2BEn, ~27a!

Dm/Z5Am2Bmn. ~27b!

For the results of Fig. 9, we found

DE/NZ50.06820.034n, ~28a!

Dm/Z50.06520.067n. ~28b!

Although the coefficients of these expressions areZ depen-
dent, we found that the ratio of them areZ independent
(AE /BE'2 and Am /Bm'1). The linear behavior of thes
curves in the double logarithmic plot, as it is seen in Fig. 1
enables us to fit them byA5aZ2b. The straight lines in Fig.
10 correspond toa50.69 andb50.5 for AE , anda50.55
and b50.46 for Am . Therefore, we suggest the followin
asymptotic behavior forN→Z:

DE/N;AZS 12
N

2ZD , ~29a!

Dm;AZS 12
N

Z D . ~29b!

These results express the contribution of correlation to
energy and the chemical potential of our Coulomb bou
classical dot.

Qualitatively, such dependence can be explained
means of the crystallization energy that can be estimated

Ecr5E
0

R

d2rr~r !EI~r !, ~30!

whereEI(r ) is the local density crystallization energy th
we approximated by the result from a homogeneous Wig
crystal @15#,

EI5a0Ar. ~31!

f

FIG. 10. Logarithmic plot of the parameterA of the linear fit of
the deviation curves for the energy per particle and the chem
potential in the nearlycomplete screeninglimit.
1-6
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The coefficient equalsa0'3.921 for the triangular lattice
Now inserting the above expression into Eq.~30!, replacing
the electron density by its asymptotic expression~11!, and
taking Eq.~25b! into account we obtained the following e
timate:

Ecr'2pa0E
0

R

rdrrcs
3/25

a0Z3/2

A2p
E

0

R rdr

~r 211!9/4
s

5
2a0Z3/2

5A2p
H 12Fp4 ~12n!G5/2J . ~32!

Taking only the first term into account and dividing th
above crystallization energy byN5Z$12(12n)%, we ob-
tained the following approximate crystallization energy p
particle:

Ecr

N
'

2a0AZ

5A2p
~22n!, ~33!

which demonstrates the same parameter dependencies a
tained earlier, Eq.~29a!, from a fitting of our simulation re-
sults.

Differentiating the above crystallization energy expre
sion byn, we also obtained an estimation for the correlati
contribution to the chemical potential

mcr5
d

dN
Ecr5

2a0AZ

5A2p

d

dn
n~22n!;AZ~12n!, ~34!

which coincides with our earlier result, Eq.~29b!.
Unfortunately, no similar simple expressions can be

tained for the dot radius as depicted in Fig. 11. We see
the radii from the hydrodynamic approach and the discr
system differs substantially, and the deviation grows in
limiting n→1 case. The discrete system is more compac
compared to the continuous one, which is an indication t
the discrete system may lead to overcharging@7#, which can-
not be described by a hydrodynamic theory.

VI. CONCLUSIONS

We studied numerically the ground state properties o
2D model system consisting of classical charged partic
that are Coulomb bound. This system is similar to an ato
system. TheN electrons moving in a plane are confine
through a positive remote impurity potential of chargeZ. The
configurations forn!N/Z are similar to those of a paraboli
confined dot, but forn;1 they are very different with an
inner core consisting of approximately a triangular latt
and an outer region with particles situated on a ring.

A hydrodynamic analysis of the problem clearly emph
sizes the importance of correlation effects between the n
tively charges particles. Furthermore, analytical express
for the correlation energy contributions to the total ene
and the chemical potential were obtained in the limit
nearly overscreening, e.g.,n;1. Those analytical result
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compare favorably well with our numerical ‘‘exact’’ simula
tion results.
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APPENDIX: COULOMB POTENTIAL EXPANSION
COEFFICIENTS

According to Eq.~18!, the Coulomb potential expansio
coefficientsAn depend on the single variableb51/R, and
they can be calculated straightforwardly. Indeed, multiplyi
Eq. ~18! by P2m(t), integrating it overt, and using the
normalization integral for symmetric Legendre polynomia
one obtains the following integral expression:

An~b!5~4n11!E
0

1 P2n~t!dt

A11b22t2
. ~A1!

The most accurate way to calculate the above integral i
expand the denominator into at2n power series and use th
analytical expression for

FIG. 11. Comparison of maximal~R! and mean radii~r! of the
electron system obtained from the numerical simulation~for differ-
ent Z values! and in the hydrodynamic approach as function ofn
5N/z. TheZ dependence of the maximum and the mean radiu
enlarged in the inset.
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E
0

1

x2kP2n~x!dx5
~21!nG~n2k!G~k11/2!

2G~2k!G~n1k13/2!
, ~A2!

which enables us to convert the integral~A1! into the follow-
ing sum:

An~b!5
~4n11!

2Ap~11b2!n11/2 (
m50

`
G2~m1n11/2!~11b2!2m

G~m11!G~m12n13/2!
.

~A3!

The convergence of this sum is rather slow. Fortunately
can be improved by adding the asymptotic, namely, replac
Eq. ~A3! by the following expression:
no

a

-

04660
it
g

An~b!5
~4n11!

2Ap~11b2!n11/2 (
m50

s
G2~m1n11/2!~11b2!2m

G~m11!G~m12n13/2!

1
4n11

~11b2!s1n11/2H 1

Aps
2b eb2s@12F~bAs!#J ,

~A4!

wheres is an integer which should be optimized for rap
convergence andF(z) is the error function. The above ex
pression is very convenient and enables us to obtain a g
accuracy in a fast way if one uses the recurrence express
for the calculations of theG functions@as for the Legendre
polynomials in Eq.~22! as well#.
nd

ys.
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