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Structure and correlations in two-dimensional classical artificial atoms confined
by a Coulomb potential
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The ordering ofN equally charged particles{e) moving in two dimensions and confined by a Coulomb
potential, resulting from a displaced positive cha#@e is discussed. This is a classical model system for
atoms. We obtain the configurations of charged particles which, depending on the vhla@@Z, may result
in ring structures, hexagonal-type configurations, and\iiZ~1 in an inner structure of particles which is
separated by an outer ring of particles. FdiZ<1, the Hamiltonian of the parabolic confinement case is
recovered. FON/Z~1, the configurations are very different from those found in the case of a parabolic
confinement potential. A hydrodynamic analysis is presented in order to highlight the correlations effects.
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[. INTRODUCTION and a surrounding impurity-free matrix with a larger electron
affinity. The quantum mechanical electron structure of this
Quantum dots, oartificial atoms have been a subject of System was studied in Reb] and it was found that due to
intense theoretical and experimental studies in recent yeaie absence of the rlsingularity in the potential, the order-
[1] due to the occurrence of numerous interesting effectéNg of the energy levels is dominated by the no-radial-node
caused by electron correlation, e.g., Wigner crystallizationstates, in contrast to real atoms, wherand p states are
overcharging, and nontrivial behavior in a magnetic field.dominant. .
These electron correlations appear most clearly when the N the present paper, we present a systematic study of the
electron interaction and the confinement potential dominateSYStem of Ref{3] as a function of the number of particles

over the kinetic energy of the system. This can be realized,N)- In contrast to Refl3], we will not vary the strength of

e.g., in, quantum dots which have much smaller electror#ne conll_‘mementspoter?tlal, as I.th'ft V&'a:ﬁ already_prtlesentid n
density as compared to real atoms. our earlier workl 3], where we limite e numerical results

Correlation effects show up in an even more pronounce(.Ij0 the_ cas&=N=4, but we W'" varyZ andN. Furthermore,
.we will compare our numerical results with the results of a

way in classical systems where .the kinetic energy Is zero IrP1ydrodynamic i.e., continuum approach. In the latter case
the absence of thermal fluctuations. Two-dimensid@a) the electron density is taken as a fluid, i.e., there are no

clas.sical dots confined by a parabolic potential were studie harge quanta. This is in contrast to our numerical simulation
earlier and a table of Mendeleyev for such artificial atomsere the electrons are point particles with a fixed quantized
was constructefP]. The classical system that is more closely charge value. The fact that charge is now distributed in pack-
related to real atoms was studied in RES], where as a  gges ofq=—e will introduce important correlation effects,
function of the strength of the confinement potential, surprisyhich is the central theme of the present work.

ing rich physics were observed such as structural transitions, Note also that the present classical study can serve as a
spontaneous symmetry breaking, and unbinding of particles:eroth-order approach for more demanding quantum me-
which is absent in parabolic confined dots. The confinemenghanical calculations. Recently, such classical calculations
potential was of the Coulomb type, but in order to preventyere used6] as a starting point in order to construct better
the collapse of all electrons onto the nucléwich we call  quantum wave functions, at least in the strong magnetic field
“impurity” in this case), the positive charg&Ze was dis- |imit.

placed by a certain distance from the 2D plane where the Besides the above mentioned analogy with real and arti-
electrons were moving ifsee Fig. 1 Note that our system ficial atoms, which are inherently quantum mechanical, there
is related to the “superatom” system introduced by exist other experimental realized systems that behave purely
Watanabe and Inoshited]. The superatom is a spherical classically and for which our study is relevant. Examples are
modulation-doped heterojunction. In particular, it is a quasicharged colloidal suspensions where it was found recently
atomic system that consists of a spherical donor-doped core
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that correlation effects between the counterions can result 16
into an overscreening and attraction between like charged (a)
colloids[7]. Our system is a simplified 2D model for those
colloidal systems.

The system under study can be realized experimentally in
the system of electrons above liquid heli(i] by putting a o 08
positive localized charge in the substrate that supports the :
liquid helium. The equivalent quantum mechanical system 04 .
can be realized using low-dimensional semiconductor struc- ' . eiree .
tures with impurities, also called remote impurities, which . . . ot
are displaced by a distance from a quantum W&l In both 0 ‘ : t e
cases, it will be rather difficult to increase the number of N
positive chargeZ beyond a few units.

Another possible realization of our system is by bringing 8 :
an atomic force microscope tip close to a 2D electron gas. ®) .
When this tip is charged positively, it will induce a confine- &
ment potential very similar to the one studied in the present
paper. The advantage of this approach is that the chaege
on the tip can be varied continuously by increasing the volt-
age on the tip.

This paper is organized as follows. In Sec. I, we describe 2
the mathematical model and our numerical approach to ob-
tain the configurations. The results of our numerical simula-
tions are given in Sec. lll. A hydrodynamic approach that %20 a4 38 42
neglects the correlation effects is presented in Sec. IV. The N
numerical simulation results are compared with the results of FIG. 2. The radial position of the particles,, as a function of

the hydrodynamic approximation in Sec. V, which Clearlythe number of electrons in the ddt, for a system with confinement

brings a,lbom the importanc_e of the charge correlation. Ouf)ositive chargez=50. The number of electrons is varied frah
conclusions are presented in Sec. VI. =2 up toN=50.
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Il. THE MODEL calculated the frequencies of the normal modes of the system
using the Householder diagonalization technidg]. The

—e, which we call here and further as electrons, interactin onfiguration was taken_a_ls final when all freq_uencies of the
through a repulsive Coulomb potential and moving in the ormal modes were positive and the energy did not decrease

x-y-plane. The particles are kept together through a ﬁxeéurth”ert. The mtetae_l_St_""i’lc(f_LlStati.s r\]/vere avoulj_eqbllntro%ug_r&g a
positive charge&Z e located at a distancafrom the plane the smatl temperature = » which was negligiole and di

particles are moving iisee Fig. 1 The total energy of this not influence the accuracy of the simulation.
system is given by the Hamiltonian
N 2 N
H=— E 2 ;Jr ¢ L ) As an example of our results we present in Fig. 2 the
€ i=1 ri2+ a? € i1 |ri_rj| radial distribution of the electrons for a fixed positive charge
. . Z=150 for the impurity as a function of the numbers of elec-
Here, the symbok stands for the dielectric constant and  ygng N, in the dot. Clearly, two different electron distribu-
={x,y} is the two-component position vector of the 2D elec-jo, types can be distinguished. Namely, for small number of
tron. For convenience, we express the electron energy iBjectronsN,s a ring structure arrangement for the electrons
units of Eo=e“/ea and all the distances in units @f This s gpserved which is similar to the one for a parabolic dot
allows us to rewrite Eq(1) in the following dimensionless (compare with the configurations given in RET)); for large
form: N, the outer electrons can form a ring that is clearly separated
N N from the other electrons in the dot. This is more clearly seen
H=— 2 Z n 2 1 _ ) in Fig. 3 where examples of two different configuratidfer
=1 i+l iSTE Iri—ril small and largeN) are presented. Note that in the case of
largeN, the core electrons are arranged in nearly a triangular
The ground state configurations of the two-dimensionalattice, which is a characteristic for an infinite electron sys-
system were obtained using the standard Metropolis algaem.
rithm [10]. The electrons are initially put in random positions  The very different type of configurations for smalland
within some circle and allowed to reach a steady state corlargeN is a consequence of the fact that the screening of the
figuration after a number of simulation steps in the order ofCoulomb center is a much more complicated problem as
10°. To check if the obtained configuration is stable, wecompared to the parabolic-dot case. Now its behavior is con-

We study a system witiN negatively charged particles

Ill. STABLE CONFIGURATIONS
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FIG. 3. Configurations for two values of the number of particles N
N for a fixed Coulomb center witll =50.
225} *
trolled by two parameters, namely, the number of electrons,
N, which characterizes the discreteness of the charges taking /
participation in the screening, and the positive charge 1.50} /’
which represents the strength of the confinement Coulomb x e
potential. o "
In the case of a relatively small number of electrons ( 0.75¢ 8ngAAA’A
=N/Z<1), the confinement potential is strong, and the elec- ' (b)
trons are located close to the origin where the confinement 0.00 L . . .
potential can be replaced by the following approximate one: 0 50 N 100 150

FIG. 4. The energy per particl@) and the maximum radiu)
of the Coulomb dotsolid circles and the parabolic ddiopen tri-
angles as a function ofN. The confinement charge of the Coulomb

Z
—Z+ =12 ©)

z
V=2

Now substituting it into Hamiltoniaf2) and scaling the vari- 90t isZ=200.

ables . . L
is under the influence of a nonhomogeneous electric field.

H—(ZI2)YRH, r—(2/2)Y, (4)  We already know that correlation effects in such a system is

of most importance. That is why it is worth to take as a

one obtains the Hamiltonian reference the hydrodynamic approach, which is some mean
field theory where no correlation effects are included.

N N
1
— 2\1/3 2
Happr= = (227 N+i21 i +i>1'2:1 Iri—r;|” © IV. HYDRODYNAMIC APPROACH

In the hydrodynamic approach, the electrons are described

which, up to a nonessential energy shift, coincides with thg),, 1he 2D densitw(r). Thev create a potentiab(r.z) that
Hamiltonian of a parabolic dot as considered in R&i. In o)l;eys the Poissgﬁ(equuatioz P #(r.2)

the aboveZ=50 case we have the same parabolic-dot-like

configurations up ttN=9, while forN=10, new configura- V2(r,z)=4mp(r)8(2), (6)
tions as(3,7), (4,7), and so on appear. For largérthe simi-
larity between parabolic dot and Coulomb center screening g T " T - T
persists up to largeN values. 0.02Le : o
The equivalence of Coulomb screening and the results for ) ‘.. (Es -Es) . —
a parabolic dot at smalN values is confirmed in Fig. 4, | . .
where the energy per particle and the maximum radius of a - QQ (Eq- '

Coulomb dot confined by a positive impurity charge '\Q\EB) - -
=200 are shown as a function dbf and compared with the T N PR
results obtained for the parabolic d&t14]. Moreover, if one i K\ . 17
plots the differences of energy per particéealed byZ) as a -
function of the number of particld¥, as is shown in Fig. 5, L. L.
we can see small cusps related to the so called “magic num- SR N
bers,” which are known to be an important feature of the oL
configurations of the parabolic dofts2] 0-000 25 20 75 100
In the opposite case of large electron numbers (),
where the system is nearly neutral, one can expect to find
features that are specific for our Coulomb screening case and FIG. 5. Difference in the energy per particle geas a function
which are not found with a parabolic dot. In this asymptoticof N for a Coulomb dot withZ=100. Examples of configurations
case, the Coulomb dot presents a low density sy$@rthat  where kinks are found in the energy curve are shown in the insets.

Ens1y (N+1)Z - EINZ
o
2
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in the whole 3D space. Using the dimensionless variables < Qi)
introduced in Sec. I, the electron density is measureal if d(r,2)=D(7,0)= 2 CnPan(7) = (13
units and the potential ie/ea units. Note we took into ac- n=0 Qan(0)

count the cylindrical symmetry of the problem caused by the i _

confining potentialV(r)=—2z/\r?+1 [see Eq.(2)]. The in terms of the firsP,,, and secon®,,, kind Legendre poly-

Poisson equation can be replaced by the Laplace e uationnpmials' Thus, the potential created by the electrons on the
g P y P d disk (c=0, 7<1) can be presented as

V2¢(r,z)=0 (7) ”
everywhere outside the-y plane, together with the bound- B(N)=D(7)= 2 CoPay(1). (14
ary condition n=0

ae(r,z) Now taking into account that on the disk, we have according
P =2mp(r) (8)  to Eq.(120),

z z=0

on this plane. 7 Z:O:i 7 , (15)
The mathematical model is based on the statement that Iz RT do =0
the electronglocated in the circular disk of radiu®) have
the same energy at every point of the dot, namely, and satisfying the boundary conditié8), one gets the analo-
gous expansion for the electron density
{V(r)=é(1)};<r=pn=const. ©)
. 1 <

Here, the symbolp(r) = ¢(r,0) stands for the potential cre- p(r)=x(7)=— S R: nzo CiLyPon(7), (16)

ated by the 2D electrons in the disk, and the symbas the
chemical potential of this electron system.

The above equations have to be supplemented with onwhere
more expression, namely, the conservation of the total num-
ber of electrons I'(n+1)

2
=2 F(n+1/2)J . (17

o=0

d .
Lp=— %In Qan(io)

R

N=277J rdrp(r). (10
0 andI'(x) is the Gamma function.

Next, we expand the Coulomb center potential on the disk

The hydrodynamic approach is a kind of mean fieldinto a series of Legendre polynomials as well,

theory where no correlation effects are included. For in-
stance, the phenomena of overchardinpcannot take place,

and the conditiom=N/Z<1 is always satisfied, namely, the V(r)=— z - E E APon(7), (18)
number of electronbl attracted by the Coulomb center never RV1+1/R?—7° RiZo "

exceeds its charge numbgr The specific case=1 is re-

ferred to ascomplete screeningn this case, the analytical and inserting it together with Eq14) into Eqg.(9), we obtain
solution of the above equations can be obtained using ththe final expression

mirror charge technique, and it leads to the following result:

z
) 1 11 Ch=— Mén,o_ ﬁAn (19
pedl)=——"" "=
S 2m(r241)
_ o o ~ for the electron density expansion coefficieGts.
with nee=1 and ucs=0. This simple limiting case result is In order to define the chemical potential we have to
useful as a reference. remember that the electron density has to be equal to zero at

In the generaN<Z case, we solved the hydrodynamic the free-electron system boundary R. Thus, the electron
equations using the oblate spherical coordinates {&1,  density should satisfy the following condition:
0<o <) which are defined by

[

x=Ry(0?+1)(1-7°)cosb, (12a 27RIM 7x(7)= — > CnL,Pan(0)
7—0 n=0
y=Ry\(0°+1)(1—7?)siné, (12b) , =
z=RoT (120 = kbR 20 AnL-nP2n(0)
as it was done in Ref$11,13 for the case of a parabolic dot =0, (20
with radiusR. The solution of the Laplace equati@r) can
be presented as an expansion, which finally enables us to define the chemical potential
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FIG. 6. Hydrodynamic solutiofsolid curve$ and its asymptote FIG. 7. Hydrodynamic solution for the electron density for vari-
(dashed curvesfor large R: Curve 1—number of particlefEq. ous dot radii.
(23)], curve 2—chemical potentigEqg. (21)].
1 4 (25b)
0 N.=1— _—,
as ’7TR

Z
Mm= R_Lo n§—: AnL,P2,(0)

=0

which holds for a nearly neutrah(~1) electron system. In

_ i; 2 (—1)"A I'(n+1) 21) Fig. 7, the electron density for various dot radii is shown. We
a R 171=0 "T(n+1/2)° see that in the case of small radiis equivalently largez,
i.e.,n<1), the electron density becomes similar to the den-
and write down the following electron density expression: sity in a parabolic dot,(fv\/ﬁz/_Rz), while in the oppo-
site large radius case, it tends to the limiting denglfl) for
the completely screened case.

x(7)= 21 ArLn{Pon(7)—P2n(0)}. (22

27R?r =
. ) ] ] V. CORRELATION EFFECTS
Inserting the density expressi@h6) into Eq. (10), one ob-

tains the number of electrons, In order to compare the numerical simulation results with

the hydrodynamic approach, we scaled them by the charge

N 2 R numberZ. In Fig. 8a), the energy per particle scaled Byis
n=-=- Aot ZH (23 shown as a function of the relative number of electrans
=N/Z.
taking part in the screening of the Coulomb center. The hydrodynamic resulfsolid curve was obtained by

Equations(18) and(21)—(23) actually are the solutions of numerically integrating the scaled chemical potentizl)
the problem if the coefficientd,, are known. These coeffi- over the number of electroms namely,
cients are calculated in the Appendix.

The density(22) enables us to calculate all properties of E(n) 1 (n
the electron system. For instance, the mean squared electron 7N ZNJo X dn. (26)
radius can be estimated as

1 (R 2 16A, In Fig. 8b), the same comparison is shown for the scaled
<r2>zﬁfo drr3p(r):R2(§— 157-rn)' (29 chemical potential. The numerical simulation results were

calculated as the difference of the total energies for adjacent
Due to the linear dependence of the confinement potentia{

onfigurations, namelyy=Eyn; 1 — En. We see that when
(18), the chemicall potentidll), and the densitﬁZ) on the hy%:i)r:;/rr?; nﬂg”}ggjlltnc.rreh?sefs’ tg%&“ﬁi:@”i ;g\r/]vafr(()jrs ttﬁg
Eharge numpez, It can .be removed by a scaling, .and the chemical potentiglFig. 8b)] than for the total energy curves

ydrodynamic problem is actually controlled by a single pa—[Fig 8a)]

rameter(say n or R) in contrast to the system of discrete ! '
electrons, for which the two parameterg @nd N) were
essential. Thus, the general solution can be presented by b
chemical potential and density curves as is shown in Fig.
by solid curves. The corresponding dashed curves indicatg
the asymptote of the above quantities

The deviation of the energy and the chemical potential of
he exact numerical simulation results from their hydrody-
cégmic counterparts and has to be interpreted esri@lation
nergybecause such correlations are not included in the hy-
rodynamic approach. As an example, we show in Fig. 9, for
Z=100, this difference in energy per particle and similar
results for the chemical potential. The curves for other values
Pas= — E (259  of the confinement charge demonstrate a similar behavior.
R? The most remarkable feature of these curves is the linear
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FIG. 10. Logarithmic plot of the parametérof the linear fit of
the deviation curves for the energy per particle and the chemical
potential in the nearlgomplete screenintjmit.

behavior in the nearly full screening regiom-¢1). The
curves in the above region can be fitted by the rather simple
analytical expressions

AE/NZ=Ag—Bgn, (273
AplZ=A,—B,n. (27b

For the results of Fig. 9, we found
AE/NZ=0.068-0.03%, (283

AulZ=0.065-0.06". (28b)

Although the coefficients of these expressions amepen-
dent, we found that the ratio of them akeindependent
(Ag/Bg~2 andA,/B,~1). The linear behavior of these
curves in the double logarithmic plot, as it is seen in Fig. 10,
enables us to fit them b= aZ#. The straight lines in Fig.
10 correspond taxr=0.69 andB=0.5 for Ag, and «=0.55
and 5=0.46 for A,. Therefore, we suggest the following
asymptotic behavior foN— Z:

AE/N~ﬁ<12NZ), (299
Ap~ ﬁ(l—';). (29b)

These results express the contribution of correlation to the
energy and the chemical potential of our Coulomb bound
classical dot.

Qualitatively, such dependence can be explained by
means of the crystallization energy that can be estimated as

Eo= fRdzrp(f)Eu(r), (30)
0

whereE,(r) is the local density crystallization energy that
we approximated by the result from a homogeneous Wigner
crystal[15],

Ei=ap\p. (32)
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The coefficient equals,~3.921 for the triangular lattice.

Now inserting the above expression into E8§0), replacing

the electron density by its asymptotic expressiaf), and

taking Eq.(25b) into account we obtained the following es-

timate: @

agZ®? (R rdr

s
V2m Jo (r24+1)94

R
Ecr~2wa0f rdrp=
0

2a023/2 T 5/2
=——11—|—(1—n . 32
5\27 { g~ ] (32 6
Taking only the first term into account and dividing the
above crystallization energy byf\=Z{1—-(1—n)}, we ob-
tained the following approximate crystallization energy per & A
particle: ;ﬁ
v
2+
B 2002 ) ) 39
_— A — —nNn ,
N 5V2m
which demonstrates the same parameter dependencies as ob- %.0 05 1.0
tained earlier, Eq(29a, from a fitting of our simulation re- n

SU|tS.‘ . L FIG. 11. Comparison of maxim&R) and mean radi{r) of the
_ Differentiating the above crystallization energy expres-gjectron system obtained from the numerical simulatfon differ-
sion byn, we also obtained an estimation for the correlationgnt 7 values and in the hydrodynamic approach as functiomof
contribution to the chemical potential =N/z. TheZ dependence of the maximum and the mean radius is
enlarged in the inset.

d 2ayVZ d ) . .
Mcr:d—Ecr: O\/— d—n(z— n)~ \/2(1— n), (34 compare favorably well with our numerical “exact” simula-
5y27 4n tion results.

which coincides with our earlier result, E29b).
Unfortunately, no similar simple expressions can be ob-
tained for the dot radius as depicted in Fig. 11. We see that W.P.F. and G.A.F. were supported by the Brazilian Na-
the radii from the hydrodynamic approach and the discretgional Research CounciCNPq, the Brazilian Ministry of
system differs substantially, and the deviation grows in theCulture and EducatiotMEC-CAPES, and the Ministry of
limiting n—1 case. The discrete system is more compact aplanning (FINEP). Part of this work was supported by the
compared to the continuous one, which is an indication thaflemish Science FoundatiofFWO-VI), the “Onderzoek-

the discrete system may lead to overchardingwhich can-  sraad van de Universiteit AntwerperiGOA), and the EU-
not be described by a hydrodynamic theory. RTN on “Surface electrons.”
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VI. CONCLUSIONS APPENDIX: COULOMB POTENTIAL EXPANSION

We studied numerically the ground state properties of a COEFFICIENTS

2D model system consisting of classical charged particles According to Eq.(18), the Coulomb potential expansion
that are Coulomb bound. This system is similar to an atomigoefficientsA, depend on the single variable=1/R, and
system. TheN electrons moving in a plane are confined they can be calculated straightforwardly. Indeed, multiplying
through a positive remote impurity potential of chay@he  Eq. (18) by P,,(7), integrating it overr, and using the
configurations fon<N/Z are similar to those of a parabolic normalization integral for symmetric Legendre polynomials,
confined dot, but fom~1 they are very different with an one obtains the following integral expression:
inner core consisting of approximately a triangular lattice
and an outer region with particles situated on a ring.

A hydrodynamic analysis of the problem clearly empha- A (b)=(4n+1)fl Pon(7)dT (AD)
sizes the importance of correlation effects between the nega- n 0J1+b2— 2
tively charges particles. Furthermore, analytical expressions
for the correlation energy contributions to the total energyThe most accurate way to calculate the above integral is to
and the chemical potential were obtained in the limit ofexpand the denominator into/@" power series and use the
nearly overscreening, e.gn~1. Those analytical results analytical expression for
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S

1o (—1)"T(n—k)T'(k+1/2) (4n+1) I'2(m+n+1/2)(1+b%)~™
x2KP, (X)dx= — , (A2)  A(b)=
0 2T (—K) T (n+k+3/2) 2\ m(1+0b2)"+ 12 7= T(m+1)T'(m+2n+3/2)
which enables us to convert the integall) into the follow- an+1 1 .2
. . _ SR
ing sum: +(1+b2)s+n+l/2 = b e [1-d(bys)]t,

(4n+1) 5 T2(m+n+1/2)(1+b%) "™ (A4)
An(b)= 2Jm(1+ b+ 12 5= I'(m+1)I'(m+2n+3/2) wheres is an integer which should be optimized for rapid
(A3) convergence and(z) is the error function. The above ex-
pression is very convenient and enables us to obtain a good
The convergence of this sum is rather slow. Fortunately, iaccuracy in a fast way if one uses the recurrence expressions
can be improved by adding the asymptotic, namely, replacindor the calculations of thé" functions[as for the Legendre
Eq. (A3) by the following expression: polynomials in Eq(22) as well.
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